TECHNICAL PAPER

Stateful Stream Processmg
Legacy Stream Processing™ ~

Dissecting th_e Differences

Introduction

Hyper-connected applications, things/sensors, and humans are producing more data today
than ever before. Data has become the new oil for the Digital Economy. Big Data can drive
significant business benefits if mined, analyzed and acted upon effectively. Case in point
are the FANG Companies (i.e. Facebook, Amazon, Netflix, and Google), that have become
the most valuable companies in the world worth billions of dollars and dominate the tech

industry by effectively managing Big Data.

Why Stream Processing is important now more than ever before?

With the emergence of 5G, Big Data is about to experience a seis-
mic shift. 5G promises data rates 100x of 4G, network latency of
under one millisecond, the ability to support one million devices/
sq. km., and 99.999% availability of the network. The velocity and
volume of new data under 5G is expected to grow exponentially.
In addition to the rise in V's, the complexity and demands from
operational analytics will become far greater. 5G is set to disrupt
the way we ingest, store, and analyze data yet again.

5G is set to make the Internet of Things (loT) a reality by provid-
ing fast connectivity and higher capacities. Gartner estimates: “loT
endpoints to reach an install base of 25.1 billion units by 2021
— gartner.com
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(https://www.gartner.com/document/code/347577?ref=grbody&refval=3881676)

These endpoints will result in a massive tsunami of data that will require real-time stream processing and
action-oriented intelligent decisioning at very low latency. The low latency requirements of lol devices and
apps can only be met with micro data centers at the edge.
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Figure 1: The Database Universe

As depicted in Figure 1, the business value of data diminishes as the data gets stale. This phenomenon is
extenuated even further for lol apps, where a lag of even a few milliseconds can lead to not just loss of
revenue (in use cases such as: customer experience management, customer churn, fraud detection and
others) but potentially even human life (use cases such as self-driving cars). Real-time actionable insights is
the future in the era of lol. Action-oriented decision making while the data is fresh/in-motion is the next key
differentiator for data-driven organizations. Real-time now means milliseconds; businesses demand moving
from post event reconciliation to in-line data processing. Value of data diminishes rapidly; if action is not
taken immediately, the opportunity to monetize an event is lost.

The 5G network utilizes high frequency bands to deliver on the promised speed. However, high frequency
bands cause considerably higher interception, which requires 100X more small cell towers than the num-
ber of macro towers. This increase in cell tower density leads to an exponential increase in the number of
events from two specific functions: the Access Management Function (AMF) and the Session Management
Function (SMF).

With a service-based architecture, data stores have been unified into two categories: structured subscriber
data in a User Data Repository (UDR) and all other data in an unstructured storage function in Unstructured
Data Storage Function (UDSF). These are extensions of the shared data storage concept that has become a
mainstay with the genesis of Virtualized Network Functions (VNFs). Both of these functions require a scal-
able, in-memory stateful stream processing solution that not only performs, but also does not lose data and
provides accurate answers and decisions. This takes the need beyond data storage and streaming data, and
combines the needs into a unified platform.

The decisions being made in the modern system are no longer based off of static rules and policies - rules
are continually evolving by learning from new data and training models. These learnings must be deployed
into the decision-making process, and this needs to happen instantly, seamlessly, in a live environment,
without any stoppage of service.
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Limitations of Legacy Stream Processing

Wikipedia defines Event Stream Processing (ESP) as “Event stream
processing, or ESP, is a set of technologies designed to assist the
construction of event-driven information systems. ESP technol-
ogies include event visualization, event databases, event-driven
middleware, and event processing languages, or complex event
processing (CEP).

While a message bus (also known as message queues) is defined
by Wikipedia as “software-engineering components used for in-
ter-process communication, or for inter-thread communication
within the same process.” Message bus technology enables sub-
scribers to pull specific messages (or events) from publishers. After
processing the message, it is either removed from the queue or
persisted in some systems.

Stream processing solutions on the market today were originally
architected as message queues. Their inherent architecture limits
them from offering transactional and analytical processing capa-
bilities. Below is an overview of modern Enterprise app require-
ments that are unmet by legacy stream processing solutions.

» Responsiveness: Mission critical apps often have someone or
something critical waiting for a response on the analysis to take
a decision and act on it.

Legacy steam processing
architectures think of
data streams as either
event time windows or
process time windows

to “batch” the data in
order to process it. But
reality does not operate
in discrete time windows.
Batch processing in time
windows, results in either
a loss of important events
or considerably delayed
data processing.

o Contextual state: Is critical to making meaningful business decisions. Existing stream processing tools, at
best, offer either static state used primarily for enrichment, or state that is isolated to an individual stream.
This limits the processing to very basic data models. Most modern apps require decisioning that relies on
complex data models. These apps also rely on low latency decisions, disk based stream processing tools
that use a 3rd party database to store state that just can not meet low latency requirements.

o Complexity: Along with state, modern stream processing apps are required to process anywhere from
tens to thousands of rules in real-time and apply embedded complex logic via Machine Learning (ML) to
multiple incoming streams. Additionally, as discussed earlier, current stream processing platforms can not
support complex data models, i.e. events that map to multiple tables.

» Delivery Guarantees: Ideally an “exactly once” guarantee is desired, i.e. you will see the event exactly
once. An acceptable alternative is an “at-least once” guarantee with idempotent operations.

¢ ACID: Stream Processing technologies on the market today do not offer native ACID Transactions re-
quired for dealing with exactly once semantics. Lack of ACID is especially pronounced when scaling a
cluster.

e High Availability: Current stream processing systems only support asynchronous replication across clus-
ters. With asynchronous replication, the chances of losing vital business data is very high in the event of
node failure. Synchronous replication, on the other hand, writes data to the primary node and a copy/
copies to one/many nodes simultaneously, ensuring data safety at all times.
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Legacy steam processing architectures think of data streams as either event time windows or process time
windows to “batch” the data in order to process it. But reality does not operate in discrete time windows.
Batch processing in time windows results in either a loss of important events or considerably delayed data
processing.

The evolution from Lambda architecture to Kappa architecture addresses updated code reprocessing of the
data without needing a batch layer, but still operates within the constraints of time windows. The binary
view of time windows is unnatural due to the chunking of data processing. Additionally, current stream pro-
cessing solutions can only process individual streams in conjunction with some static data, or process the
data as an enrichment pipeline (even when done as a continuous stream). This is not suitable for the evolved
streaming requirements in which the stream is not only processed for downstream applications, but also
needs to drive decisions either per event or in a complex event processing frame of reference.

“Turning database technology inside out” involves a lot of compromise, as evidenced in current stream pro-
cessing solutions attempting to retrofit a database and interact with the store. This approach sacrifices many
guarantees like atomicity and consistency that one would expect and need from a data platform. Modern
Enterprise apps require stream processing needs to go beyond the Kappa architecture.

VoltDB'’s Stateful Stream Processing

Streaming data can be categorized into three primary functions: ingestion, processing and storage. While
there are disparate solutions for each of these functions - in a world that now requires low latency com-
plex decisions at scale - you need a system that brings all these functions together. Dedicating a team of
developers to write and maintain glue code is not a viable long term strategy that can be implemented in
production.

While traditional stream processing solutions employ a “pipeline” approach, it is more often than not a de-
cision making process oriented to initiate an action. Secondly, all new streaming data is ultimately going to
be new training data for learning systems. When the learning iteration is complete, you need to bring that
new and improved insight into your decision making process. VoltDB offers all of these essential capabilities
into a single platform i.e. combining ingest, store, process/decide, notify/alert and import machine learn-
ing outcomes into a SQL accessible form. This confluence of capabilities is defined as the Stateful Stream
Processing Architecture. The wide range of use cases that Stateful Stream Processing enables, can be clas-
sified under four categories; in the following section we will examine each category and examples that fall
under each category.

VoltDB was born as an in-memory translytical database, and as it has evolved into a full fledged stream pro-
cessing platform, its database roots enable VoltDB to offer stateful stream processing. VoltDB offers all the
essential attributes that are critical for stateful stream processing:

e Blazing Fast:

o In-Memory: VoltDB'’s database roots enable it to store state locally in-memory. Reading and writing
data from/on disk is a laborious process. Memory, however, is much faster than disk/flash drives, and
now more affordable than ever.

o Per-machine Efficiency: VoltDB was architected for high throughput and low latency on smaller
clusters.
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e Distributed: VoltDB can be optimized for individual app requirements with partitioning. Database tables
and the stored procedures that access those tables are partitioned on one or more machines enabling
distributed state storage and processing.

o Scaling: VoltDB’s architecture enables it to scale seamlessly to increase (or decrease) the throughput of
your app. Simply by increasing the number of nodes in your VoltDB cluster by either saving a snapshot
of the database that can then be reloaded to the resized cluster, or by adding nodes while the database
is running without interrupting production.

 Fault Tolerance: VoItDB is committed to keeping your valuable data safe, it keeps running in the face of
most failures. With VoltDB’s telecom and finance pedigree it has been trusted to run mission critical en-
terprise apps with 99.999% availability. VoltDB achieves industry best fault tolerance with the following
features:

o High Availability: VoltDB was built to withstand hardware, software, or network failures. It is currently
the only stream processing and data management platform to offer both inter-cluster and intra-cluster
replication.

o Full Disk Persistence: VoltDB employs snapshots and command logs to achieve full disk persistence:

@ Snapshots: Are a complete record of your VoltDB data and app, taken at a single logical point in time
and stored on the filesystems of your clustered machines. VoltDB offers serializable consistency;
every single state can been seen as the serial application of all previous transactions. A point-in-
time snapshot represents the state between two transactions, globally, across the whole cluster.

o Command Log: VoltDB fills in the gaps between snapshots by writing a log of operations to disk as
it processes. In the unlikely event of a cluster-wide failure, the system can be recovered by loading
the most recent snapshot, then replaying the log from the snapshot’s logical time to the end of the
log. In this way, operations between snapshots can be stored safely on disk.

o Replication: VoItDB offers passive (unidirectional, from master to replica) and cross datacenter repli-
cation (database copies reside in multiple data centers, and are actively updated across all clusters).
Replication ensures that your data is safe in the event of a power failure or other unforeseen disasters.

o Strongest ACID State Guarantees: VoltDB’s partitions run independently, while providing ACID se-
mantics for the commands processed from its associated command queue.

= Atomicity-While executing the commands, the program maintains in-memory undo logs so that
aborted commands can roll back, ensuring atomicity.

= Consistency-Constraints and data types are enforced during the execution of each command guar-
anteeing consistency.

@ |solation-Commands run one at a time without overlap, providing for serializable isolation.

o Durability-If all of the commands have deterministic side-effects (running the same queue of com-
mands in the same order against the same starting dataset is promised to produce the same ending
dataset), then writing (and fsync-ing) the command queue to disk before executing the commands
makes all data changes durable.
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No other stream processing solution on the market today can provide the same stateful stream processing
capabilities: speed, scalability, and fault tolerance in one integration platform. In addition to contextual state,
VoltDB also features capabilities essential to complex Event Stream Processing (ESP), such as:

» Complex Event Processing (CEP) with Complex Data Models: Data streams are getting more complicat-
ed with the dawn of lol. VoltDB has a history of performing CEP on data streams: correlating multiple
event sources, detecting complex patterns across these sources, enriching new data streams along with
enriching historical data. Unlike other stream processing solutions on the market today VoltDB was built
to handle complex data models, with the ability to:

o Have one event affect multiple tables and streams
o Provide comprehensive views for sophisticated analytics
o Implement windowing functions with stream views

» Smart(er) Stream Processing: While, traditional stream processing platforms can do basic machine learn-
ing (ML) and pattern recognition, they lack the ability to:

o Make complex decisions using hundreds to thousands of variables with contextual state in milliseconds.

o Dynamically train and update ML models based on not just data from the stream, but also historical big
data from a data lake/data warehouse.

In-memory NewSQL relational database management systems (RDBMS) were architected from the very
first line of code for complex fast data processing. With RDBMS core functionality - such as User Defined
Functions (UDF) and Stored Procedures - complex ML models customized for your business can be em-
bedded in-platform for real-time actions/decisions on streaming data. PMML models are automatically con-
verted into an executable process as a UDF and implemented in production. Only a NewSQL in-memory
RDBMS can offer the necessary combination of complex actionable decisions + low latency + high through-
put required for modern web scale apps.

e Low latency Actions: Analyzing streams in real-time is important, however, generating a low latency “ac-
tion” from the analysis is critical for your business. With its in-memory distributed architecture, built-in
stored procedures, and a host of other features, VoltDB has been proven to provide low latency action-
able responses in the most demanding use cases.

» Comprehensive New SQL: SQL is a proven, long established standard to query data. Attempts to replace
SQL with either MapReduce in the Apache Hadoop framework — or one of the many NoSQL tools - have
failed miserably. Ironically, many “NoSQL’ tools have pivoted back to adding SQL or “SQL-like” query
languages. Apache Kafka jumped on the SQL bandwagon with “KSQL” for stream processing. KSQL, how-
ever, is far from standard SQL.

VoltDB on the other hand was born as a NewSQL RDBMS; it offers fully ANSI compliant SQL on stream-
ing data, enabling a much wider range of queries and complex event processing. Additionally, ANSI com-
pliant NewSQL provides developers with the familiarity, flexibility and standardization necessary to build
apps that rely on fast stream processing of data. NewSQL provides the same scalable performance of
NoSQL systems for Hybrid Transactional & Analytical Processing (HTAP) workloads without compromis-
ing on ACID guarantees.
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Stateful Stream Processing Enables NEW Use Cases

loT, the shift to the cloud, along with the increased number of hyper connected devices, sensors powered by
the faster connectivity of 5G are driving the complexity and volume of streaming data.

Next generation apps in the ol era rely on:
1. Information derived from multiple sources/streams-Complex Event Processing (CEP)
2. Processing a continuous stream of data in real-time-at low latency
3. Take intelligent actions to drive desirable business outcomes—-with embedded Machine Learning

Traditional stream processing platforms were originally architected as pub/sub message bus technologies;
these are incapable of stateful, intelligent CEP, at low-latency. In this section, we will describe and provide
examples of use cases which rely on these attributes for success.

Responsive Stream Processing

A lot of modern day use cases have an app that is awaiting a response from the analysis done by the up-
stream Event Stream Processing system, as represented in Figure 1 below.
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ML models can be embedded as User Defined Functions (UDFs) in-platform for real-time intelligent deci-
sioning. The Stateful Stream Processing engine enables developers to operationalize ML models built by
data scientists in languages such as PMML. Complex PMML models are automatically converted into User
Defined Functions (UDFs). The ML UDF then works like a standard SQL function. Embedded ML models can
be trained and updated several times a day/as necessary based on new and historical data, to ensure they
remain relevant to the business.

The app makes a request to the Stateful Stream Processing platform to update stored data, run queries and in-
voke the embedded ML models. The platform then provides the app with an intelligent response in real-time.
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Anexample of aresponsive stream processing use case in the Telecom industryis customervalue management:

Many telecom operators are using alerts to upsell data blocks (e.g. 500MB for $5, valid until start of new
billing period) and service passes (e.g. for roaming outside of the USA). A lot of operators have gone beyond
this basic customer value management use case, and have started upselling real-time contextually aware
offers. And as 5G gets rolled out across the globe, operators will need to develop exponentially more offers
for an increasingly segmented customer base; the ability to be able to apply pricing and charging rules in
real-time, to a wide range of new offers is fundamental.

It starts by ingesting mobile phone usage events in real-time adn detect marketing opportunity events,
such as:

e First time use of a specific feature
e Plan usage thresholds: 50%, 75%, 90%, 95%, 100%
 Time left, or time since activation, first use, etc
» Personalized offers by segment and history
Before the customer hangs up the phone, an offer is made to them to buy additional airtime.

Transitional Stream Processing

Transitional stream processing involves updating the stored state as multiple streams pass through the
Stateful Stream Processing platform. The analysis performed by leveraging contextual state, along with the
complex interactions of multiple streams, results in the generation of a new stream which is utilized to take
a desired action downstream. Figure 2 provides a representative architecture of a typical transitional stream
processing use case.
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The eCommerce/Website clickstream analytics use case falls under the transitional stream processing cat-
egory. Analyzing clickstream data streams (the series of clicks a site visitor makes on your website) provides
rich insight into which pages are effective and which pages site visitors ignore. When analyzed along with
sales and conversion data streams, clickstream analysis can help discover the most effective series of steps
needed to encourage conversions, sales, and add-on purchases. For example, after a customer adds a specif-
ic golf club to their cart, based on cohort analysis they would instantly get a recommendation for golf shoes,
balls, and tees that they could also add to their cart.

Convergent Stream Processing

Convergent stream processing use cases ingest data from multiple event streams and potentially historical
data from a data warehouse/data lake. While the app queries and receives responses from the Stateful
Processing Platform in this scenario, there is no exit stream. Figure 3 represents a typical Convergent Stream
Processing architecture.
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Telecom fraud detection and prevention falls under this category. Wangiri (Japanese word for “one ring”)
fraud consists of fraudsters calling thousands of unsuspecting subscribers and hanging up after one ring. If
the subscribe calls back the missed call number, they are charged high international call termination rates.
Post event analysis does not help with Wangiri fraud, as the subscriber is already billed for the high interna-
tional rates, subscribers are unhappy with the telecom operator, and the brand reputation of the operator
is tarnished.

Analyzing streaming data to detect anomalies in call attributes, such as: format, geolocation, blacklisted
numbers, etc enables real-time detection of fraudulent calls. The Stateful Stream processing platform can
identify fraudulent calls and block them before they terminate through a responsive action.
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Hybrid Stream Processing

Use cases that fall under the hybrid stream processing category are a combination of either: 1) Responsive
and Transitional stream processing, or 2) Responsive and Convergent stream processing.
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Policy and Charging Function (PCRF), which is a part of Operations
Support System (OSS) and Billing Support System (BSS) applications
in the Telecom industry, is an excellent example of Hybrid Stream
processing.

Historically, vendors have their own policies that were hardwired
into the network. Here are some examples of functionality that is
typically hardwired into the solution provider’s hardware:

» Switching of video vs non-video content
e Prioritizing around a congested cell

With the emergence of Software Defined Networking (SDN) and
Network Function Virtualization (NFV), switches and routers are no
longer hardware-driven. They are software-driven and the rules are
not hardcoded on the box, but the equipment calls into a common
policy repository.

Stream processing
solutions on the market
today were originally
architected as message
queues. Their inherent
architecture limits
them from offering
transactional and
analytical processing
capabilities.

A Stateful Stream Processing engine, such as VoltDB, provides just that. It stores subscriber information and
attributes need to be accessed quickly, along with session data. With a stateful in-memory system, Telecom
solution providers can prioritize connecting calls within the same cell ahead of calls across different cells; a
hospital device sensor can be prioritized ahead of a gas meter sensor for lol networks.
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The VoltDB powered PCRF system is also responsible for:

e Billing: Applying a policy for post-paid subscribers where the bill gets added for every minute of air-time
or data being used based on different attributes. For instance, who the subscriber is, what plan they have

and where are they located, etc.

e Charging: Similar to billing, but for prepaid subscribers where the amount gets deducted to the prepaid

minutes they may already have.

» Regulatory Compliance: Regulations require customers to get real-time alerts when they near their data

quota limits and when they are roaming.
Summary

VoltDB's Stateful Stream processing solution is perfect for modern
apps that require real-time complex actionability. Embedded con-
textual state persistence is a crucial requirement for low latency de-
cisioning; no other solution on the market today offers a local state
machine. Other tools require either writing code to maintain event
state or writing glue code to connect to a disparate database that
provides state. Both approaches add on latency and are expensive
to build and maintain.

VoltDB's Stateful Stream processing solution provides state, CEP
with complex data models, fault tolerance, strong ACID semantics,
along with the capability of familiar SQL queries, all out-of-the-box.

Stateful Stream Processing enables a host of low latency responsive
use cases that are just not possible with traditional Event Stream
Processing technology.

Stateful Stream
Processing enables a
host of low latency
responsive use

cases that are just

not possible with
traditional Event Stream
Processing technology.

About VoltDB

VoltDB powers applications that require real-time intelligent decisions on streaming data for a connected world, without compromising on ACID require-
ments. No other database can fuel applications that require a combination of speed, scale, volume and accuracy.

Architected by the 2014 A.M. Turing Award winner, Dr. Mike Stonebraker, VoltDB is a ground-up redesign of the relational database for today’s grow-
ing real-time operations and machine learning challenges. Dr. Stonebraker has conducted research on database technologies for more than 40 years,
leading to numerous innovations in fast data, streaming data and in-memory databases. With VoItDB, he realized the full potential of tapping streaming
data with in-memory transactional database technology that can handle data’s speed and volume while delivering real-time analytics and decision mak-
ing. VoItDB is a trusted name in the industry already validated by leading organizations like: Nokia, Financial Times, Mitsubishi Electric, HPE, Barclays,

Huawei, and more.
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